博客
关于我
Google Colab 免费GPU 教程
阅读量:285 次
发布时间:2019-03-01

本文共 2266 字,大约阅读时间需要 7 分钟。

Google Colab 免费 GPU 教程

近日,Google 的交互式工具 Colaboratory 推出了 GPU 支持的版本,提供了免费的 Tesla K80 GPU,支持 Keras、Tensorflow 和 PyTorch 等前端框架。Colab 是谷歌开源的一款类似 Jupyter 的交互式工具,适合进行深度学习和数据分析。以下是使用 Colab 免费 GPU 的详细教程。

1. 在 Google Drive 创建文件夹

Colab 工作在 Google Drive 上,我们需要先新建一个文件夹。进入 Google Drive 后,右键点击新建文件夹,选择适当的文件夹名称,准备开始创建 Colab 环境。

2. 设置免费 GPU 环境

进入 Colab 的编辑界面,在“Edit”菜单中选择“Notebook settings”,然后勾选“Hardware Accelerator”(GPU),将 GPU 设为默认运行硬件。

3. 运行 Python 代码

配置好 Colab 环境后,就可以开始运行 Python 代码了。以下是一些简单的代码示例,左侧的小按钮可以方便地运行代码。

4. 配置依赖库运行环境

安装必要的库并配置环境,这一步需要运行以下代码:

!apt-get install -y -qq software-properties-common python-software-properties module-init-tools!add-apt-repository -y ppa:alessandro-strada/ppa!apt-get update -qq!apt-get -y install -qq google-drive-ocamlfuse fuse!from google.colab import auth!auth.authenticate_user()!from oauth2client.client import GoogleCredentials!creds = GoogleCredentials.get_application_default()!import getpass!google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret} < /dev/null 2>&1 | grep URLvcode = getpass.getpass()!echo {vcode} | google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret}

运行代码后会显示验证码,输入验证码后即可完成授权。

5. 挂载到 Google Drive

运行以下命令将 Colab 挂载到 Google Drive:

!mkdir -p drive!google-drive-ocamlfuse drive

此时你已经完成了 GPU 环境的搭建,接下来可以运行一些有趣的例子。

6. 安装必要的库

安装 Keras:

!pip install -q keras

安装 PyTorch:

!pip install -q http://download.pytorch.org/whl/cu75/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl torchvision

安装 OpenCV:

!apt-get -qq install -y libsm6 libxext6 && pip install -q -U opencv-python

安装 XGBoost:

!pip install -q xgboost==0.4a30

安装 GraphViz:

!apt-get -qq install -y graphviz && pip install -q pydot

安装解压工具:

!apt-get -qq install -y libarchive-dev && pip install -q -U libarchive

安装其他工具包可根据需求使用以下命令:

!pip install 或者 !apt-get install

7. 查看 GPU 状态

使用 TensorFlow 查看 GPU 状态:

import tensorflow as tftf.test.gpu_device_name()

运行上述命令可查看当前使用的设备。Colab 提供 Tesla K80 GPU,你还可以使用以下命令查看所有本地设备:

from tensorflow.python.client import device_libdevice_lib.list_local_devices()

8. 运行中的信息查看

查看内存信息:

!cat /proc/meminfo

查看处理器信息:

!cat /proc/cpuinfo

9. 最后建议

Colab 为各位 AI 小伙伴提供了极为便利的研究环境,不仅有友好的交互界面,同时还有 GPU 支持。以后做科研的同学可以不用担心 GPU 的问题。

如果你对 Colab 感兴趣,可以立即注册 Google 账号开始使用。别忘了分享这篇教程,让更多人也能轻松使用免费 GPU!

转载地址:http://vrla.baihongyu.com/

你可能感兴趣的文章
Objective-C实现even_tree偶数树算法(附完整源码)
查看>>
Objective-C实现Exceeding words超词(差距是ascii码的距离) 算法(附完整源码)
查看>>
Objective-C实现exchange sort交换排序算法(附完整源码)
查看>>
Objective-C实现ExponentialSearch指数搜索算法(附完整源码)
查看>>
Objective-C实现extended euclidean algorithm扩展欧几里得算法(附完整源码)
查看>>
Objective-C实现ExtendedEuclidean扩展欧几里德GCD算法(附完整源码)
查看>>
Objective-C实现external sort外排序算法(附完整源码)
查看>>
Objective-C实现Factorial digit sum阶乘数字和算法(附完整源码)
查看>>
Objective-C实现factorial iterative阶乘迭代算法(附完整源码)
查看>>
Objective-C实现factorial recursive阶乘递归算法(附完整源码)
查看>>
Objective-C实现factorial阶乘算法(附完整源码)
查看>>
Objective-C实现factorial阶乘算法(附完整源码)
查看>>
Objective-C实现Factors因数算法(附完整源码)
查看>>
Objective-C实现Farey Approximation近似算法(附完整源码)
查看>>
Objective-C实现Fast Powering算法(附完整源码)
查看>>
Objective-C实现Fedwick树算法(附完整源码)
查看>>
Objective-C实现fenwick tree芬威克树算法(附完整源码)
查看>>
Objective-C实现FenwickTree芬威克树算法(附完整源码)
查看>>
Objective-C实现fermat little theorem费马小定理算法(附完整源码)
查看>>
Objective-C实现FermatPrimalityTest费马素数测试算法(附完整源码)
查看>>