博客
关于我
Google Colab 免费GPU 教程
阅读量:285 次
发布时间:2019-03-01

本文共 2266 字,大约阅读时间需要 7 分钟。

Google Colab 免费 GPU 教程

近日,Google 的交互式工具 Colaboratory 推出了 GPU 支持的版本,提供了免费的 Tesla K80 GPU,支持 Keras、Tensorflow 和 PyTorch 等前端框架。Colab 是谷歌开源的一款类似 Jupyter 的交互式工具,适合进行深度学习和数据分析。以下是使用 Colab 免费 GPU 的详细教程。

1. 在 Google Drive 创建文件夹

Colab 工作在 Google Drive 上,我们需要先新建一个文件夹。进入 Google Drive 后,右键点击新建文件夹,选择适当的文件夹名称,准备开始创建 Colab 环境。

2. 设置免费 GPU 环境

进入 Colab 的编辑界面,在“Edit”菜单中选择“Notebook settings”,然后勾选“Hardware Accelerator”(GPU),将 GPU 设为默认运行硬件。

3. 运行 Python 代码

配置好 Colab 环境后,就可以开始运行 Python 代码了。以下是一些简单的代码示例,左侧的小按钮可以方便地运行代码。

4. 配置依赖库运行环境

安装必要的库并配置环境,这一步需要运行以下代码:

!apt-get install -y -qq software-properties-common python-software-properties module-init-tools!add-apt-repository -y ppa:alessandro-strada/ppa!apt-get update -qq!apt-get -y install -qq google-drive-ocamlfuse fuse!from google.colab import auth!auth.authenticate_user()!from oauth2client.client import GoogleCredentials!creds = GoogleCredentials.get_application_default()!import getpass!google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret} < /dev/null 2>&1 | grep URLvcode = getpass.getpass()!echo {vcode} | google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret}

运行代码后会显示验证码,输入验证码后即可完成授权。

5. 挂载到 Google Drive

运行以下命令将 Colab 挂载到 Google Drive:

!mkdir -p drive!google-drive-ocamlfuse drive

此时你已经完成了 GPU 环境的搭建,接下来可以运行一些有趣的例子。

6. 安装必要的库

安装 Keras:

!pip install -q keras

安装 PyTorch:

!pip install -q http://download.pytorch.org/whl/cu75/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl torchvision

安装 OpenCV:

!apt-get -qq install -y libsm6 libxext6 && pip install -q -U opencv-python

安装 XGBoost:

!pip install -q xgboost==0.4a30

安装 GraphViz:

!apt-get -qq install -y graphviz && pip install -q pydot

安装解压工具:

!apt-get -qq install -y libarchive-dev && pip install -q -U libarchive

安装其他工具包可根据需求使用以下命令:

!pip install 或者 !apt-get install

7. 查看 GPU 状态

使用 TensorFlow 查看 GPU 状态:

import tensorflow as tftf.test.gpu_device_name()

运行上述命令可查看当前使用的设备。Colab 提供 Tesla K80 GPU,你还可以使用以下命令查看所有本地设备:

from tensorflow.python.client import device_libdevice_lib.list_local_devices()

8. 运行中的信息查看

查看内存信息:

!cat /proc/meminfo

查看处理器信息:

!cat /proc/cpuinfo

9. 最后建议

Colab 为各位 AI 小伙伴提供了极为便利的研究环境,不仅有友好的交互界面,同时还有 GPU 支持。以后做科研的同学可以不用担心 GPU 的问题。

如果你对 Colab 感兴趣,可以立即注册 Google 账号开始使用。别忘了分享这篇教程,让更多人也能轻松使用免费 GPU!

转载地址:http://vrla.baihongyu.com/

你可能感兴趣的文章
npm run build部署到云服务器中的Nginx(图文配置)
查看>>
npm run dev 报错PS ‘vite‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。
查看>>
npm scripts 使用指南
查看>>
npm should be run outside of the node repl, in your normal shell
查看>>
npm start运行了什么
查看>>
npm WARN deprecated core-js@2.6.12 core-js@<3.3 is no longer maintained and not recommended for usa
查看>>
npm 下载依赖慢的解决方案(亲测有效)
查看>>
npm 安装依赖过程中报错:Error: Can‘t find Python executable “python“, you can set the PYTHON env variable
查看>>
npm.taobao.org 淘宝 npm 镜像证书过期?这样解决!
查看>>
npm—小记
查看>>
npm介绍以及常用命令
查看>>
NPM使用前设置和升级
查看>>
npm入门,这篇就够了
查看>>
npm切换到淘宝源
查看>>
npm切换源淘宝源的两种方法
查看>>
npm前端包管理工具简介---npm工作笔记001
查看>>
npm升级以及使用淘宝npm镜像
查看>>
npm发布包--所遇到的问题
查看>>
npm发布自己的组件UI包(详细步骤,图文并茂)
查看>>
npm和yarn清理缓存命令
查看>>